TRV0109101, a G Protein-Biased Agonist of the µ-Opioid Receptor, Does Not Promote Opioid-Induced Mechanical Allodynia following Chronic Administration.
نویسندگان
چکیده
Prescription opioids are a mainstay in the treatment of acute moderate to severe pain. However, chronic use leads to a host of adverse consequences including tolerance and opioid-induced hyperalgesia (OIH), leading to more complex treatment regimens and diminished patient compliance. Patients with OIH paradoxically experience exaggerated nociceptive responses instead of pain reduction after chronic opioid usage. The development of OIH and tolerance tend to occur simultaneously and, thus, present a challenge when studying the molecular mechanisms driving each phenomenon. We tested the hypothesis that a G protein-biased µ-opioid peptide receptor (MOPR) agonist would not induce symptoms of OIH, such as mechanical allodynia, following chronic administration. We observed that the development of opioid-induced mechanical allodynia (OIMA), a model of OIH, was absent in β-arrestin1-/- and β-arrestin2-/- mice in response to chronic administration of conventional opioids such as morphine, oxycodone and fentanyl, whereas tolerance developed independent of OIMA. In agreement with the β-arrestin knockout mouse studies, chronic administration of TRV0109101, a G protein-biased MOPR ligand and structural analog of oliceridine, did not promote the development of OIMA but did result in drug tolerance. Interestingly, following induction of OIMA by morphine or fentanyl, TRV0109101 was able to rapidly reverse allodynia. These observations establish a role for β-arrestins in the development of OIH, independent of tolerance, and suggest that the use of G protein-biased MOPR ligands, such as oliceridine and TRV0109101, may be an effective therapeutic avenue for managing chronic pain with reduced propensity for opioid-induced hyperalgesia.
منابع مشابه
Interaction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملUsefulness for the combination of G protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance
Background µ-Opioid receptor internalization is considered to be critically linked to antinociceptive tolerance. Although µ-opioid receptor agonists have been administered simultaneously with other drugs to control pain, little information is available regarding opioid–opioid interactions. Therefore, the present study was designed to further investigate the utility of a new G protein-biased lig...
متن کاملVenlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy
Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...
متن کاملVenlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy
Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 362 2 شماره
صفحات -
تاریخ انتشار 2017